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ABSTRACT 

We examine U(d) valued cocycles for a Z 2+ action generated by a mixing, 
permutative cellular automaton and show that the set of HSlder continuous 

cocycles (for a given HSlder order) which are cohomologous to constant 

cocycles is both open and closed in the appropriate topology. A continuous 

dimension function with values in {0, 1,...,d} is defined on cocycles; a 

cocycle is cohomologous to a constant precisely when the value is d. When 

d = I (the abelian case) the first (essential) cohomology group is countable. 

If U(1) -~ circle is replaced by a finite subgroup, this cohomology group is 

finite. 

Introduction 

The study of endomorphisms of full shifts began with Hedlund's paper [2] and 

was followed by Coven and Paul's investigation of endomorphisms of shifts of 

finite type [1]. These papers prepared the way for the analysis of dynamical 

systems which have come to be known as cellular automata. 

In this paper we shall understand a cellular automaton to be a Z 2+ lattice 

dynamical system generated by a one-sided shift of finite type and an endomor- 

phism of this shift. In fact we shall concentrate our attention on the case where 

the endomorphism is permutative in the sense introduced by Hedlund. 

Our purpose is to understand certain rigidity properties associated with the 

cohomology of many Z 2 (and Z 2+) lattice dynamical systems. This paper is part 

of a general enquiry undertaken, for example, in [3], [10]. In the closely related 

papers by Schmidt and the author [6], [11], the underlying configuration spaces 

are algebraically defined and the conclusion drawn (with appropriate hypotheses) 
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is that  cocycles are cohomologous to algebraic cocycles. It is therefore natural to 

abandon the algebraic context (except, of course, as a rich source of important 

examples) and to find out what can be said of cocycles in a different setting. 

We have chosen to investigate the cohomology of permutative cellular automata, 

where all cocycles will be HSlder continuous. 

Although we concentrate here on Z 2+ actions our results will have a bearing 

on similarly defined Z 2 actions, the latter being projective limits of the former. 

Of course, some work (not much) is required to show that this is the case. 

Although we take a brief look at real (and C d) valued cocycles (which turn out 

to be cohomologous to constants) our main interest is in cocycles with values in 

a compact group, specifically U(d). Such cocycles are naturally associated with 

group extensions of our Z 2+ action. If the cocycle is a coboundary, the extended 

Z 2+ action is a trivial extension in that it is essentially the direct product of the 

original action with the identity. Similarly, if the cocycle is cohomologous to a 

constant cocycle the extended Z 2+ action is a direct product of the original action 

with translations in U(d). It is reasonable, therefore, to regard such cocycles as 

essentially trivial. 

It is known (cf. [6], [10]) that there are Z 2+ actions where all (HSlder) circle 

valued (d = 1) cocycles are trivial in this sense. However, this is not always so. 

For the space of HSlder cohomology classes modulo constants we define a 

dimension function dim0 with values in (0, 1 . . . . .  d) (here 0 < ~ < 1 is the HSlder 

order) which turns out to be continuous, and dim0 = d precisely for the trivial 

class. 

When we take d = 1 (circle valued cocycles) the above classes form an abelian 

group - -  the essential (first) cohomology group H~ (K) - -  which is countable and 

discrete (and sometimes trivial). 

When we further specialise to a finite subgroup G of K (the circle), H i (G) is 

a finite group. 

The essential idea is to show that for mixing Z 2+ actions generated by a permu- 

tative cellular automaton, the property of a HSlder cocycle being cohomologous 

to a constant cocycle is stable under perturbation. That is, a nearby cocycle 

shares the same property. 

ACKNOWLEDGEMENT: I am pleased to acknowledge helpful conversations with 

M. Pollicott, K. Schmidt and S. Stonehewer, the latter concerning the A4 valued 

cocycle in Section 3. 
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1. P r e l i m i n a r i e s  

Let A be a 0 - 1 aperiodic matrix of dimension k and let 

X A  = x E { 1 , 2 , . . . , k } :  A ( x , ~ , X n + l )  = l for  al l  n E Z + . 

n=O 

With the topology inherited from the Tychonov topology on the direct product 

space, X A  is a compact zero-dimensional metrisable space which is invariant with 

respect to the shift a given by 

O'X)n ~ Xn+l .  

The shift restricted to XA is  called a shif t  of  f in i te  t y p e  (defined by A). 

An endomorphism of this shift is a continuous surjective map r of XA such 

that 

O"T = Tff. 

It is easy to see [2] that endomorphisms necessarily have the form 

( r x ) ,  = r o ( x ~ , x , + l , . . . , x n + ~ ) ,  n e Z + 

where r0 is a map from the set of all (allowable) words of length g + 1 to the set 

of symbols 1, 2 , . . . ,  k. Such an endomorphism is called p e r m u t a t i v e  if for each 

word x l , . . .  ,xe the map 

xo  - ~  r 0 ( x 0  . . . .  , z t )  

is a bijection (from the set of predecessors of xl  into the set of symbols). 

Equivalently, a x  = a y  and rx  = vy imply x = y. 

The Z 2+ action on XA generated by a and an endomorphism r is called a 

ce l lu lar  a u t o m a t o n .  We can display a point x = {X~ ,o}  6 X A  either as an 

infinite sequence of symbols which is shifted to the left by a (first symbol deleted) 

or as an array, 

XO,2 Xl,2 X2,2 .... 

XO,1 Xl,1 X2,1 .... 

XO,O Xl,0 X2,0 .... 

where x , . , .  = r0 (xm, . -1 , . . . ,  x .~+t , . - l ) ,  in which case r can be interpreted as the 

vertical shift, i.e. deletion of the bottom row, and a is the horizontal shift to the 



318 w. PARRY Isr. J. Math. 

left (deletion of the left column). Of course, each row is completely determined 

by its predecessor. 

Thus a cellular automaton can be displayed as a Z 2+ lattice dynamical system 

generated by the horizontal and vertical shifts. On the other hand, complete 

information is provided by a and r acting on our original space XA. 
In general it is a non-trivial problem to construct cellular automata: given r0, 

when is 7- a surjection from XA to itself? There is also the problem of deciding 

when 7- is permutative. However, many examples are provided by an algebraic 

construction generalising Ledrappier's example [4]. 

2. Algebra ic  examples  

Let p be a prime number and let d: Z 2+ ~ Zip have finite support 

D = {(m,n) �9 Z2+: d(m,n) ~ 0modp} 

where D + (m, n) C Z 2+ implies (m, n) �9 Z 2+. 

Define 

Xd={ xE(Z/p)z~+: Z d(m+r'n+s)x(m'n)=Of~ 
(rn,n)EZ 2+ 

Evidently Xd consists of points which are Z 2+ arrays of symbols chosen from Zip 
and is a, r invariant, where, as usual, a, v are the horizontal and vertical shifts; 

Xd is a compact metrisable abelian group and a, T are commuting surjective 

endomorphisms. Ledrappier's example is provided by d whose support D is 

(0, 0), (0, 1), (1, 0) and where d has value 1 on each of these points. 

In other words Xd consists precisely of those points (Z 2+ arrays) such that  the 

sum of coordinates on D (or any translate of D) is zero mod p. 

If D has a single point with maximum y coordinate and if this point lies on the 

y axis (here we are only giving sufficient conditions), then Xd can be represented 

as a cellular automaton. 

An example will suffice. Let D = (0, 0), (1, 0), (1, 1), (0, 2) and let d have value 

1 on these points: 
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Let X be the space of all configurations of symbols from Zip on the lattice 

Z + x {0, 1). It is easy to see that  each point in X determines a configuration of 

symbols on the lattice Z + • {0, 1, 2} if we require that  the sum of d values over 

D (or its translates) should be zero modp. And again the resulting configuration 

determines one on Z + x (0, 1, 2, 3} and so on. Thus a point of X determines a 

configuration on Z + • Z +. 

The space Xd can be represented as the configuration space of a cellular 

automaton as follows. For symbols we take all unit square 'tiles' which con- 

sist of unit squares with elements from Zip placed at vertices. There are pa such 

tiles, T1, T2, . . . ,  Tp,. The shift of finite type a is defined by the matrix A where 

A(Ti, Tj) = 1 if and only if the tiles Ti and Tj + (1, 0) agree on their overlap. The 

function TO is given by Tk = T0(T/, Tj) when, in the following diagram: 

X0,2 - -  Xl,2 

Tk 
Xl,1 

X0'I v Ti X, Tj I x2,l 

X0,0 Xl,0 X2,0 

we have Xo,o + Xl,O + xt,1 + xo,2 = 0 and xl,o + x2,0 + x2,1 + Xl,2 = 0. 

The above example (like Ledrappier's example) is permutative. This follows 

from the fact that  (0, 0) E D, for in this case T~ --* ro(Ti, Tj) is a bijection for 

each Tj, or in other words the tiles Tk and Tj determine Ti (i.e. xo,o). 

3. Cocycles  of  cel lular  a u t o m a t a  

From here on we shall be concerned with a cellular automaton which, as we have 

said, is a Z 2+ action generated by a shift of finite type a (on X = XA) and an 

endomorphism r ( a r  -- va). 

We shall also suppose that  the automaton is permutative and mixing. This 

latter condition requires that  for all non-empty open sets U, V 

a-mr-"U n V ~ 0 

whenever m+n is large enough. For the algebraic examples the condition amounts 

to 

= 
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where X is a character implies that  X is trivial or m = n = 0. (See also [12] for a 

study of ergodic properties of permutative cellular automata.) 

We shall investigate Hhlder continuous cocycles with values in a compact Lie 

group or, equivalently, in U(d), the group of d-dimensional unitary matrices. 

If f is a continuous function on X with values in a Euclidean space (C d or R, 

for example) then the nth variation is defined as 

varnf = sup { I f ( x ) -  f(y)l:  x~ = yi ,0  < i < ~} 

and we write f E Fo (= Fo(Cd), F0(R), Fo(U(d)) according to context, if 

va rn f_<K0 n, n = O, 1, . . . 

for some constant K.  Here 0 < 0 < 1 and II denotes the Euclidean norm. The 

least such K is denoted Iflo. 
For such functions we say that f is Hhlder of order 0. The spaces Fe (cd), Fo (~) 

are Banach spaces when endowed with the norm 

Ilfll0 = Iflo~ + Ifl'o. 

An Fo (= Fo(Cd), Fo(R)) c o c y c l e  is an Fo pair ( f , g )  such that 

f O T - - f = g o a - - g .  

If (f~, g~) is another Fe cocycle, we say that  it is cohomologous  to the first if 

there exists an Fe function h such that  

h o a + f = f ~ + h  and h o v + g = g ~ + h .  

When (f ' ,  g') = (0, 0) is trivial (f,  g) is called a c o b o u n d a r y .  

In the same way an Fo (U(d)) cocycle  is a pair (], g) (each belonging to 

Fo (U(d)) ) such that  

g o a . f = f o r . g ,  

and (f,  g), (] ' ,  g') are cohomologous  if there exists h E Fe (U(d)) such that  

h o a . f = f l . h  and h o 1 . g = g l . h .  

In case (ft,  g~) = (1,1) is trivial, (J, g) is called a c o b o u n d a r y .  We shall be par- 

ticularly interested in the case where f ' ,  g~ are constants (necessarily commuting) 

when we say that  (], g) is an essent ia l  cobounda ry .  



Vol. 99, 1997 CELLULAR AUTOMATA 321 

For the case d = 1 (U(1) = K,  the circle) there are examples of mixing 

permutative Z 2+ actions where all Fo(K) cocycles are essential coboundaries 

and, in contrast, there are examples which have Fe(K) cocycles which are not 

essential coboundaries. 

For example, all Fo(K) cocycles for Ledrappier's Z 2+ action are essential 

coboundaries whereas for the other example mentioned in Section 2, the alge- 

braic cocycle (% 71) given by homomorphisms into Zmod2 where 

~ ( x )  = x o , l , ~ ( x )  = xo,o 

is not an essential coboundary. (These examples and many others are discussed 

in [ll].) 

However, it is interesting to note that for d > 1 there are Fe (U(d)) cocycles 

for Ledrappier's example which are not essential coboundaries. 

Such an example was shown to me by Klaus Schmidt. There is a subgroup G of 

X which is isomorphic to Z/2  • Z/2  and which is preserved by a and T. Moreover, 

T = a 2 when restricted to G, and a has order 3 on G, permuting all elements of 

G (other than the identity) cyclically. Thus a, ~- induce endomorphisms a, T on 

X / G .  Since X '~ X / G  • G (as spaces) we can view a, T on X as a G extension 

of a, ~- on X / G  - -  however, G does not commute with a, v. Instead we have a 

cocycle identity of the form 

where f ,  g: X / G  ~ G. 

This equation can be made into a cocycle identity in the sense we have been 

using if we extend the value group G to the group A4 (the alternating group), 

represented as the semi-direct product G • Z/3  where 

(k ,m)  . (h,n) = (k + a m(h ) ,m  + n) .  

The functions f ,  g can then be lifted to functions on X. This then gives an A4 

valued cocycle on X which is not cohomologous to a constant. 

Alternatively we can directly construct f ,  g with values in A4 (represented as 

4 • 4 permutation matrices) as follows: 

We define f ,  g as functions of one variable, i.e. f ( x )  = f(x0,0), g(x) = g(xo,o). 

And since we are considering Ledrappier's example we shall require (as indicated 
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f ( i )g( j )  = g(i) f( i  + j) for i , j  = O, 1. In other words 

f(O)g(O)=g(O)f(O), 
f(O)g(1)=g(O)f(1), 

f(1)g(O)=g(1)f(1), 

f(1)gO)=g(1)f(O). 

When this is done ( f - l , g - l )  will be a cocycle. We define 

o lo ) 
f ( 0 ) =  0 0 1 

1 0 0 
0 0 0 

1 0 0 
g(0 )=  0 1 0 

0 0 0 

and one checks that  the equations are satisfied. 

, / ( 1 ) =  ( i  
X O  

0 
0 

, g ( 1 ) =  1 
0 

~176 
0 0 
1 0 ' 
0 1 

1 0 
0 0 ' 
0 1 

It is clear that ( f -1 ,  g - l )  is not an essential coboundary, for the equations 

I -1 (o )  = h-L(0)ah(0) 

= h-l(1)ah(O),  

/ - 1 ( 1 )  = h-l(O)ah(1)  

= h- l (1 )ah(1)  

would need to be satisfied, so that  h(0) = h(1), /(0) = f(1). However f is not 

constant. 

It is well known (cf. [9], [7] for example) that  if f E Fa(R) then the 

Ruelle-Perron-Frobenius operator 

L/: FdC) -~ Fo(C) 
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defined by 

( L , w ) ( x )  = 
o'y----X 

has a unique maximum eigenvalue a (which is simple) and an eigenfunction h can 

be taken to be strictly positive. Moreover, the rest of the spectrum is contained 

in a disc of radius less than a. 

Hence L i b  = ah, and if we write f ,  = f + l o g h - l o g h o a - l o g a  then LI,1 = 1, 

when we say that  f~ is norrnal ised.  If (1, g) is a real cocycle and f is normalised 

to f ' ,  then g can also be normalised to g' (where Lg,1 = 1) in such a way that 

(f,  g) is cohomologous to ( f ' ,  g') plus a constant (pair) (logs, logl3). We say the 

cocycle (1', g') is normal i sed .  

THEOREM 3.1: Ha ,  v generate a permutative, mixing Z 2+ action then every real 

Fo cocycle is cohomologous to a constant. 

Proof." Let (f, g) be a normalised Fo cocycle. We note that  LI1 = 1 and (using 

the permutative condition) Lie-a  = e -a. Hence e -g is constant, i.e. g is constant 

and, since f r - f = ga - g, f is constant. 

COROLLARY 3.2: With the same hypothesis, a is exactly k to 1 and r is exactly 

to 1 for some k, L 

Proof.." Normalise (0, 0) to (f, g) where f,  g are constant. Then 

Z e-/(Y)l = 1 = e-f(u)(carda-ix)  
O'y----X 

and we see that  c a r d a - i x  is constant. In the same way cardr-Zx is constant. 

COROLLARY 3.3: With the same hypothesis every C d valued Fo cocycle is coho- 

mologous to a constant. 

4. Cocycles with values in U(d) 

Throughout this section, a, T generate a mixing, permutative Z 2+ action. If (], g) 

is an Fo (U(d)) cocycle we define Ruelle operators 

LI,  Lg: Fa(C d) ~ Fo(C d) 
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by incorporating the normalisation of the trivial real cocycle (0, 0) as follows: 

where dega = c a r d a - l x  (independent of x) and degr = c a r d r - l x  (independent 

of x). 
The following identities are easily checked: 

LfLg  = LgL/ ,  

and if V], Vg are defined by VlW = f - l w  o a, Vgw = g - l w  o v then 

= v vf, 

L / V / =  id, LgVg = id. 

Moreover, since a, 7- generate a permutative Z 2+ action, then 

LIVg = VaLI and LgV l = VILg. 

(These last equations are the reason for the permutativity assumption.) 

Throughout this section we shall use (,) to denote the Euclidean inner product 

on C a and we shall use ((,/) to denote the inner product 

((v, w)) = f (v, w)dm 

on Ca valued functions v, w, where m is the measure of maximal entropy for a 

(which is also preserved by 7). 

We shall need the following elementary lemma: 

LEMMA 4.1: I f  Wi: X ~ Ca is Fo for i = 1 , . . . , g  where g <_ d and 

wl (x )  . . . .  , we(x) are orthonormal at each x E X ,  then there exist we+l , . . . ,  Wd : 

X ~ C d which are Fo and such that Wl(X),...,Wd(X) are orthonormal at each 

x E X .  

Proof." The proof is inductive so we need only produce w~+~ when $ < d. 

For an arbitrary x0 E X choose w~e+l(Xo) of unit norm and orthogonal in 
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Ca t o  W l ( X 0 )  , . ..,we(xo). Define w~+l(x ) = W~+l(XO ) on a sufficiently small 

closed-open set containing x0 so that W~+l(X ) is independent of wl (x ) , . . . ,  we(x) 

in this neighbourhood. Define we+l(x) in this neighbourhood by subtracting 

'components' contributed by wl(x) . . . .  ,we(x) and then normalising. Thus 

wl (x ) , . . . ,  we(x), We+l (x) are orthonormal for each x in the neighbourhood. We+l 

is then defined on X by piecing together these local functions using compactness 

and zero dimensionality. It is easy to see that wt+l is Fo. 

We shall use Pollicott's observation [8] regarding Browder's essential spectrum 

and Nussbaum's [5] formula for the essential spectral radius of a Banach space 

operator. Pollicott proved that the essential spectral radius of 

LI: Fo(C d) ~ Fo(C d) 

(when f is Fo) is 0. (Actually this was proved for a complex valued f and d = 1, 

but the same proof works for f e Fo(U(d)).) 

As a consequence the eigenspaces corresponding to eigenvalues a with [a[ > 0 

are finite dimensional and there are only finitely many eigenvalues a for which 

[a I > O' when O' > O. 

Thus the LI invariant subspace corresponding to all eigenvalues ]a[ >_ O' is 

finite dimensional. Call this space Eo, and equip it with the inner product 

((,)). Under the conditions of the next theorem we shall see that dimEo(Eo = 

Ue,>e Ee,) is at most d. 

THEOREM 4.2: H a, r generate a permutative, mixing Z 2+ action and (f ,g)  E 

Fo( U ( d) ) is a cocycle, then the restrictions to Eo of L f, L 9 are finite dimensional 

unitary operators and dimEo < d. Fhrthermore, (f ,g) is cohomologous to a 

cocycle (if, gr) which is constant on a subspace o: C a of dimension dimEo. In 

particular, when dimE0 = d, (f, g) is cohomologous to a constant cocycle. 

Choose 1 > 0 r > 0, then LI: Eo, ~ Eo, is a finite-dimensional operator Proof.' 

and 

l~,l_>e' 

where E~: {w: ( L / -  aI)nw = O, some n}. Since VgL ! = L I V  9 (by permutativ- 

ity) and LgLI = LIL  9 we see that Ly, V 9, L:: E~ ~ Eo and hence Eo, ~ Eo,. 

With respect to ((.))V 9 is an isometry. Let E be the space of finite linear 

combinations of Fo eigenfunctions for Vg so that E D Eo,. 
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If Vgv = or, Vgw = flw then (v, w) o r = afJ(v, w), and since r is mixing 

(v(x), w(x)) = 0 for all x �9 X if a # ~. In any case (v(x), w(z))  is constant, 

i.e. for x0 arbitrary (v(x), w(x)) = (V(Xo), w(xo)). Hence one sees that  the map 

E ---, C d, v ---, v(xo) is an isometry, so E is finite dimensional with dimension 

no more than d, and Vg: E --* E is a finite-dimensional isometry. It follows that  

VI: E ---, E is a finite-dimensional isometry. Since E is spanned by eigenfunctions 

of V I and Vlw =/~w implies w = ~Llw,  w q We, we see that E = Ee,. This is 

true for all 0 < 0' < 1 so E = Ee. In short 

LI, Lg, Vg, VI: Ee ~ Ee. 

Let wl,  . . . , we be an orthonormal basis of eigenfunctions for VI, Va: Ea ~ Es: 

V/wi = ,~iwi and Vgw~ = Oiw~ 

(i = 1 . . . .  , t )  and note that  (wi,wj) is constant and therefore zero when i ~ j ,  

since a is mixing. Hence wl (x) . . . .  , wt(x) are orthonormal at each x �9 X. Using 

Lemma 4.1 we extend to w l , . . . ,  w t , . . . ,  Wd orthonormal at each x �9 X. (There 

is no claim that  wt+l , . . . ,  Wd are eigenfunctions.) 

We define an Fs (U(d)) function W to have the U(d) value ( w l ( x ) , . . . , w d ( x ) )  

at each x �9 X, so that  ( f , g ' )  = ( W - l ( a ) f W ,  W - l ( r ) g W )  is a cohomologous 

cocycle, and in view of the equations 

w~(~x) = ~d(x)w~(x) and w,(rz)  = Z~9(x)~,(~) 

(i = 1 . . . .  , g)ft, gt leave the subspace of C a spanned by the first t unit vectors 

invariant and the operators f ' (x ) ,g ' (x )  are each independent of x E X on this 

subspace, i.e. f ,  g~ are constant on this subspace. 

When dimEs = d, this means that  f ,  g~ are both constant (diagonal) unitary 

matrices, so (f,  g) is cohomologous to a constant (pair of commuting matrices). 

We have just seen that  if the Fo (U(d)) cocycle (f ,  g) is such that  dimEs = d, 

then (f,  9) is cohomologous to a constant cocycle (a,/3) (i.e. a,/3 �9 U(d) and 

aB = Ba). In fact we can take a,/3 to be diagonal unitary matrices by choosing 

a suitable orthonormal basis for ~ .  

The converse is also true, for if f = h - r a s h  and g = h - l r ~ h  where (say) a,  

are diagonal unitary matrices such that af~ -- ~& and h E Fo (U(d)), then 

Lfwi = h - lL l (ahwi )  = aiwi, i = 1 , . . . , d  
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if we choose hw~ = 6i, the i th  unit  vector  in C d. Similarly 

Lgwi = ~iwi , i = l , . . . , d .  

Here, 

O~ ---- 

Thus  d i m e s  = d. 

~ 

In the Aa valued cocyles of  Section 3 we represented f ( i ) ,  g(i) by 

(i lo f ( 0 ) =  0 1 
0 0 
0 0 

f (1 )  = 

l oo ) 
0 0 0 
0 1 0 ' 
0 0 1 

( o11) (i ~176 g(O)=  o o 1 o 
1 o , g ( 1 ) =  o o 
0 0 0 1 

1 
0 
0 ' 
0 

and noted t ha t  

l(O)g(O) = g(O)l(o) = id, 

] (0)g(1)  -- g (0 ) f (1 )  = 
( 1Oo o !) 

0 0 
0 1 

f (1 )g (0 )  = g (1 ) f (1 )  = 
( Olo o i) 

0 0 ' 
1 0 

f (1 )g(1)  = g (1 ) f (0 )  = 
(i o o 1 

1 0 ' 
0 0 

so t h a t  ( 1 - 1 ,  g - l )  is a cocycle. Moreover f ,  g, E Fo (U(4)) for all 0 > 0. I t  is not  

difficult to show tha t  if LI-~ w = ctw ([a I > 0) then  w is a funct ion of one variable 
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and there is only one solution: a = 1, w constant. Moreover, the operator LI- I  

active on the 8-dimensional space of functions of 1 variable has the characteristic 

polynomial (A - 1)A 7. This means that dimEo = 1 < d = 4. 

Theorem 4.2 suggests the definition: dimo(j', g) = dimEo = dim0(f).  

THEOREM 4.3: I f  a, r generate a permutative and mixing Z 2+ action, then 

with respect to the relative topology induced by Fo (U (d) ) x Fo (U ( d) ), cocycles 

which are cohomologous to constants form an open and closed subset, i.e. 

{(f ,g):  dimo(f ,g)  = d} is open and dosed. 

Proof." First we remark that cocycles form a closed subset of Fo (U(d)) x 

Fo (U(d)), as is easily checked. Let (f,  g) be eohomologons to a constant; then if 

(fP, f )  is a sufficiently near cocycle it follows that L I, is Fo close to LI and, by the 

perturbation theory of linear operators, it follows that dimo(f ' )  = dim0(f) = d. 

(Here we make use of the fact that Eo = Eo, for 1 _> 0 ~ > O, in our situation.) 

By the previous theorem it follows that (ft, f )  is cohomologous to a constant. 

Hence the set of cocycles cohomologous to constants is open. 

Suppose (f,~, gn), ( f ,g)  are Fo (U(d)) cocycles such that f,~ ~ f and gn ---* g in 

the Fo (U(d)) topology and .fn = hn I o aanh,~,gn = h~ 1 o r~3,~h,~ where a,~B,~ = 

~3na,~ and a,~, 3n are diagonal unitary matrices and hn E Fo (U(d)). Then 

W i  n i i O~n W n 

with 

wni = h n  l~i  a n d  an = 

Using the uniform equicontinuity of the sequence f l ,  f 2 , . . .  (implied by the Fo 

topology) (cf. [7]) we can choose a uniformly convergent subsequence to get 

LIw i = o~iw i, Lgw i = ~iwi" 

d ,1 One can check that like w~ . . . .  ,w,~,w . . . . .  w d are orthonormal at each point 

x. Furthermore, the following argument will show that w I . . . . .  w d are not just 

continuous functions but are members of Fo(Cd). 
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We form the matr ix  W = ( w l , . . . ,  Wd), which is unitary at each point x and 

note that  

W - ~ f - l w o  ffa wherea= 

We choose vi �9 Fo(C d) so that  W - l v i  is close to the i th unit vector 5i and see 

that  

L f W  = W a L l .  

Hence L~vi = WaL '~W- lv i  and, taking a uniformly convergent subsequence, we 

get 

* = Wa* ] ( W - l v ~ ) d m  Fo 9 vi 

where the latter integral is close to 5i,i = 1 , . . . ,  d. Thus the constant matr ix  

( f  W - l v i d m  . . .  f W- l vddm)  is invertible and W �9 Fo. 

Having formed the matrix W = (w l , . . . ,  w d) �9 Fo (U(d) ) we define its inverse 

f = h - l a a h  wherea = 

h to get 

and 

( 0~1 O~ d / 

g = h - l r ~ h  where~ = 

f~d 

To arrive at the last assertion one can infer it from the proof of Theorem or one 

can use the cocycle properly as follows: Since ga f  = f'rg we have 

and therefore 

F o.a = ~ F ~  -1, 

where F = hrgh -1. If we compare both sides we have Fi,j o a is a constant 

multiple of Fi,j for each i , j  = 1 , . . . ,  d, and since a is mixing this implies each 
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Fi,j is constant. Thus F = ~, a constant, i.e. g = h-ZT~h. Of course, ~a  = a ~  

so ~ can be taken as a diagonal unitary matrix. Hence if ,  g) is cohomologous to 

a constant. 

COROLLARY 4.3: Under the same hypotheses as the theorem, the function dime 

which maps Fo (U(d) ) cocycles into (0, 1 . . . .  , d} is continuous. 

Proof: The proof is similar to the proof of the theorem using perturbation theory 

and the fact that eigenvalues cannot be 'sprung' from the disc of radius 0 to the 

unit circle. 

5. Abelian cocycles 

As usual we shall suppose a, r generate a permutative mixing Z 2+ action. In 

this section we shall be interested in abelian cocycles or, in other words, cocycles 

with values in the unit circle K (= U(1)). We shall only consider Fe cocycles. 

In this case cocycles form an abelian group under pointwise multiplication: 

(f, g) x (f ' ,  g') = ( f f ' ,  gg'). And cocycles cohomologous to constants form a 

subgroup. The resulting quotient group we call the (first) essential cohomology 

group. It is denoted by He 1 and is a topological group with the topology provided 

by Fe(g) • Fe(K). 

In the following we use Livsic's well-known result that if ] E Fe(K) and f = 

h o a/h where h: X ~ K is, say, continuous, then h E Fe(K). 

COROLLARY 5. l: For each 0 < 0 < 1, H~ = H~ (0) is countable. If 0 < 0' < 1, 

then the inclusion map (of essential cohomology classes) is an isomorphism of 

H~(O) into H~(e'). 

Proof: As we have seen, the Fo(K) cocycles, which we denote by Z(0), form 

a closed subset of Fo(K) x Fe(K) and, with respect to the relative topology, 

each (essential) cohomology class is an open and closed set. Although we can- 

not claim that Z(8) is separable in Fe(K) x Fo(K) it is a separable subset of 

Fe,(K) • Fa,(K), since F0 functions can be Fe, approximated by locally con- 

stant ('rational' valued) functions. Let S be a countable subset of Z(0) whose 

Fe, (K) x Fe, (K) closure contains Z(0). Evidently each Z(8') (essential) coho- 

mology class [if, g)]a, with a representative (f, g) E Z(0) contains some member 

of S. Thus ([(],g)]a,: (],g) e Z(8)} is countable. The proof is completed 

by showing that the inclusion map [(], g)]e -* [(], g)]a, is injective. In fact if 
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[(f,g')]o C [(f,g)]0', where (f ,g) ,  ( f ' ,g ' )  E Z(O), then ( f ,g)  is F0, cohomolo- 

gous to (f ' ,  g') (up to a constant). It follows from Livsic that  (f, g) and (f ' ,  g') 

are Fo cohomologons (up to a constant). In other words [(f, g)]o = [(f', g')]0, so 

the inclusion map is injective. 

Problem: Is H~ finitely generated? 

If (f, g) is locally constant then f ,  g are functions of a finite number of coordi- 

nates. Let f ( x )  = f ( x o , . . . , x n ) ;  then for each t > n, Ll: V~ ~ Ve-l, Lf: V,~ 

V,~ where Ve is the finite-dimensional space of complex-valued functions which 

depend on only g coordinates. In this case f ,  g E Fo(K) for all 0 > 0. Hence 

if the spectral radius of L I is positive, we see that (f, g) is cohomologous to a 

constant. The alternative is that  L I is nilpotent on each space Ve, ~ > n. 

Also, with the hypothesis that  (f, g) is locally constant we have 

COROLLARY 5.2: I f  f :  Fixa ~ 1 (assuming Fix~, = {x: ax = x} • 0) then (f ,g)  

is cohomologous to a constant. 

Proof: To see this we remark that  with an obvious recoding of the space X we 

can take f to be a function of two variables, in which case LI: V1 ~ V1, and 

takes the matrix form (,,11, . . . . . .  / 
f (k ,  1) . . .  f ( k , k ) ]  

(zeros are to be substituted at each ( i , j )  where i , j  is not allowed.) 

Since f :  Fixa ~ 1, the diagonal consists entirely of l ' s  and O's and there is at 

least one 1 since Fix~ r 0. Hence TraceL! r 0 so there is a non-zero eigenvalue. 

This implies that  (f, g) is cohomologous to a constant. 

Again with the locally constant hypothesis we have 

COROLLARY 5.3: / f  f :  Fixa~ ~ 1 (for some n > 0) then ( f ,g)  is cohomologous 

to a constant. 

Proof'. By the last corollary applied to a n, r (which is still permutative since 

anx = any, rx  = Ty implies a n - l x  = a n - l y  implies . . .  x = y) we have ( fn ,g)  

is (a",  r) cohomologous to a constant where fn  _ f a , ~ - l . . ,  f a r .  Hence there 

exists h and constants a,/3 such that  

fn  = c~hanh-1 and g = l~hrh -1. 

The fact that  (f,  g) is a cocycle now implies that  (f, g) is cohomologous to a 

constant. 
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COROLLARY 5.4: The map r which sends (cocycles modulo constants) Hlo(K) 

into Hom(Fixo~, K) (functions on the finite set Fixo~ with values in K)  defined 

by ~( / ,  g) = (fn, g)[Fix~ is an isomorphism onto its range. 

Proof'. It is clear that  ~ is a homomorphism. Suppose ~(/ ,  g) is the identity of 

Hom(F ix~K) ,  then fn(x)  = 1 and g(x) = 1 for all x E F i x ~  so, by Corollary 

5.3, (f, g) is cohomologous to a constant. 

If we replace K by a finite subgroup G, we see that 

THEOREM 5.5: The group HI(G ) ofcocycles with values in the finite subgroup 

G of K modulo essential coboundaries is finite. 

One should note here that if f :  X ~ G and f = h - l a a h  where h: X ~ K,  

then one can assume without loss of generality that h: X ~ G, since a character 

annihilating G will annihilate a. 
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